Signaling of grasp dimension and grasp force in dorsal premotor cortex and primary motor cortex neurons during reach to grasp in the monkey.

نویسندگان

  • Claudia M Hendrix
  • Carolyn R Mason
  • Timothy J Ebner
چکیده

A fundamental question is how the CNS controls the hand with its many degrees of freedom. Several motor cortical areas, including the dorsal premotor cortex (PMd) and primary motor cortex (M1), are involved in reach to grasp. Although neurons in PMd are known to modulate in relation to the type of grasp and neurons in M1 in relation to grasp force and finger movements, whether specific parameters of whole hand shaping are encoded in the discharge of these cells has not been studied. In this study, two monkeys were trained to reach and grasp 16 objects varying in shape, size, and orientation. Grasp force was explicitly controlled, requiring the monkeys to exert either three or five levels of grasp force on each object. The animals were unable to see the objects or their hands. Single PMd and M1 neurons were recorded during the task, and cell firing was examined for modulation with object properties and grasp force. The firing of the vast majority of PMd and M1 neurons varied significantly as a function of the object presented as well as the object grasp dimension. Grasp dimension of the object was an important determinant of the firing of cells in both PMd and M1. A smaller percentage of PMd and M1 neurons were modulated by grasp force. Linear encoding was prominent with grasp force but less so with grasp dimension. The correlations with grasp dimension and grasp force were stronger in the firing of M1 than PMd neurons and across both regions the modulation with these parameters increased as reach to grasp proceeded. All PMd and M1 neurons that signaled grasp force also signaled grasp dimension, yet the two signals showed limited interactions, providing a neural substrate for the independent control of these two parameters at the behavioral level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous recording of macaque premotor and primary motor cortex neuronal populations reveals different functional contributions to visuomotor grasp.

To understand the relative contributions of primary motor cortex (M1) and area F5 of the ventral premotor cortex (PMv) to visually guided grasp, we made simultaneous multiple electrode recordings from the hand representations of these two areas in two adult macaque monkeys. The monkeys were trained to fixate, reach out and grasp one of six objects presented in a pseudorandom order. In M1 326 ta...

متن کامل

Modulation of primary motor cortex outputs from ventral premotor cortex during visually guided grasp in the macaque monkey.

Area F5, in the ventral premotor cortex of the macaque monkey, plays a critical role in determining the hand shape appropriate for grasp of a visible object. F5 neurones show increased firing for particular types of grasp, and inactivation of F5 produces deficits in visually guided grasp. But how is F5 activity transformed into the appropriate pattern of hand muscle activity for efficient grasp...

متن کامل

Comparing Natural and Constrained Movements: New Insights into the Visuomotor Control of Grasping

BACKGROUND Neurophysiological studies showed that in macaques, grasp-related sensorimotor transformations are accomplished in a circuit connecting the anterior intraparietal sulcus (area AIP) with premotor area F5. Single unit recordings of macaque indicate that activity of neurons in this circuit is not simply linked to any particular object. Instead, responses correspond to the final hand con...

متن کامل

The dorsomedial pathway is not just for reaching: grasping neurons in the medial parieto-occipital cortex of the macaque monkey.

Brain control of prehension is thought to rely on two specific brain circuits: a dorsomedial one (involving the areas of the superior parietal lobule and the dorsal premotor cortex) involved in the transport of the hand toward the object and a dorsolateral one (involving the inferior parietal lobule and the ventral premotor cortex) dealing with the preshaping of the hand according to the featur...

متن کامل

Purkinje cells signal hand shape and grasp force during reach-to-grasp in the monkey.

The cerebellar cortex and nuclei play important roles in the learning, planning, and execution of reach-to-grasp and prehensile movements. However, few studies have investigated the signals carried by cerebellar neurons during reach-to-grasp, particularly signals relating to target object properties, hand shape, and grasp force. In this study, the simple spike discharge of 77 Purkinje cells was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 102 1  شماره 

صفحات  -

تاریخ انتشار 2009